Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

Zai-Su Jin, ${ }^{\text {a }}$ Wen-Xi Wang, ${ }^{a}$<br>Wei-Xiao Hu, ${ }^{\text {a }}$ Zhong-Yu Yang, ${ }^{\text {a }}$<br>Hong-Wei Chen ${ }^{\text {b }}$ and Ri-Cheng Xuan ${ }^{\text {a }}$

${ }^{\text {a }}$ College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310023, People's Republic of China, and ${ }^{\mathbf{b}}$ College of Bioengineering, Changchun University of Technology, Changchun 130012, People's Republic of China

Correspondence e-mail: xuanrc@hotmail.com

## Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
$R$ factor $=0.036$
$w R$ factor $=0.104$
Data-to-parameter ratio $=15.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

## 5-Chloro-2-benzofuran-1,3-dione

The asymmetric unit of the title compound, $\mathrm{C}_{8} \mathrm{H}_{3} \mathrm{ClO}_{3}$, contains two molecules. The molecular packing is controlled by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding.

## Comment

The title compound, (I), is a valuable intermediate for Cu phthalocyanine and anthraquinone dyes (Bansho et al., 1960), quinophthalone pigments (Dietmar et al., 1998) and poly-ether-polyimide polymers (Brunelle et al., 1999). Compound (I) can be made from phthalic anhydride by chlorination, but it is very difficult to separate (I) from the by-product 4,5dichlorophthalic anhydride by recrystallization. This paper reports the structure analysis of (I).


The asymmetric unit contains two molecules, which are very similar (Fig. 1). These two molecules are essentially planar, making a dihedral angle of $58.13(5)^{\circ}$. Except for the $\mathrm{C}-\mathrm{Cl}$ bond lengths, which are $0.01 \AA$ longer than those observed in 4,5-dichlorophthalic anhydride (Ojala et al., 1999), other bond lengths and angles are similar for the two compounds. The packing of the molecules in the crystal is governed by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Fig. 2 and Table 2).

## Experimental

The title compound was obtained by dehydration of 4-chlorophthalic acid, which was synthesized in our laboratory following the procedure described by Ayling (1929). Crystals suitable for X-ray analysis were obtained by slow evaporation of a saturated carbon tetrachloride solution at room temperature.


Figure 1


The asymmetric unit of (I), showing the atomic numbering. Displacement ellipsoids are drawn at the $50 \%$ probability level for non-H atoms.

Received 5 January 2004
Accepted 16 January 2004
Online 23 January 2004


Figure 2
Packing diagram of (I), showing the hydrogen bonds as dashed lines.

## Crystal data

$$
\begin{aligned}
& \mathrm{C}_{8} \mathrm{H}_{3} \mathrm{ClO}_{3} \\
& M_{r}=182.55 \\
& \text { Triclinic, } P \overline{1} \\
& a=6.929(2) \AA \\
& b=7.8540(10) \AA \AA \\
& c=14.262(2) \AA \\
& \alpha=77.69(1)^{\circ} \\
& \beta=88.09(1)^{\circ} \\
& \gamma=85.48(2)^{\circ} \\
& V=755.8(3) \AA^{3}
\end{aligned}
$$

$$
\begin{aligned}
& Z=4 \\
& D_{x}=1.604 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 4173 \\
& \quad \text { reflections } \\
& \theta=1.5-27.2^{\circ} \\
& \mu=0.46 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Prism, colourless } \\
& 0.4 \times 0.2 \times 0.1 \mathrm{~mm}
\end{aligned}
$$

Data collection
Enraf-Nonius CAD-4
$\quad$ diffractometer
$\omega / 2 \theta$ scans
Absorption correction: $\psi$ scan
(North et al. 1968 )
$R_{\text {int }}=0.015$
$\theta_{\text {max }}=27.2^{\circ}$
$h=-1 \rightarrow 8$
$k=-10 \rightarrow 10$
$l=-18 \rightarrow 18$
3 standard reflections every 100 reflections intensity decay: $0.5 \%$
4173 measured reflections
3336 independent reflections
2184 reflections with $I>2 \sigma(I)$

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0367 P)^{2}\right.$ $+0.2624 P]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.25 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.24 \mathrm{e}^{-3}$
$S=1.08$
3336 reflections
217 parameters
H -atom parameters constrained
Table 1
Selected geometric parameters $(\AA$ ).

| $\mathrm{C} 1-\mathrm{C} 2$ | $1.380(3)$ | $\mathrm{C} 9-\mathrm{C} 10$ | $1.374(3)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{C} 1-\mathrm{C} 7$ | $1.468(3)$ | $\mathrm{C} 9-\mathrm{C} 15$ | $1.470(3)$ |
| $\mathrm{C} 2-\mathrm{C} 8$ | $1.470(3)$ | $\mathrm{C} 10-\mathrm{C} 16$ | $1.471(3)$ |
| $\mathrm{C} 4-\mathrm{Cl} 2$ | $1.729(2)$ | $\mathrm{C} 12-\mathrm{C} 1$ | $1.731(2)$ |
| $\mathrm{C} 7-\mathrm{O} 1$ | $1.189(3)$ | $\mathrm{C} 15-\mathrm{O} 4$ | $1.193(3)$ |
| $\mathrm{C} 7-\mathrm{O} 2$ | $1.388(3)$ | $\mathrm{C} 15-\mathrm{O} 5$ | $1.386(3)$ |
| $\mathrm{C} 8-\mathrm{O} 3$ | $1.183(3)$ | $\mathrm{C} 16-\mathrm{O} 6$ | $1.181(3)$ |
| $\mathrm{C} 8-\mathrm{O} 2$ | $1.393(3)$ | $\mathrm{C} 16-\mathrm{O} 5$ | $1.395(3)$ |

Table 2
Hydrogen-bonding geometry $\left(\AA,^{\circ}\right)$.

| $D-\mathrm{H} \cdots A$ | D-H | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O} 1^{\text {i }}$ | 0.93 | 2.80 | 3.292 (3) | 114 |
| C6-H6 $\cdots$ O $6^{\text {ii }}$ | 0.93 | 3.03 | 3.466 (3) | 111 |
| $\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{O}^{\text {iii }}$ | 0.93 | 2.89 | 3.690 (3) | 145 |
| $\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{O} 2^{\text {iv }}$ | 0.93 | 2.94 | 3.675 (3) | 137 |
| $\mathrm{C} 13-\mathrm{H} 13 \cdots \mathrm{O} 1$ | 0.93 | 2.63 | 3.522 (3) | 161 |
| $\mathrm{C} 13-\mathrm{H} 13 \cdots \mathrm{O}$ | 0.93 | 2.81 | 3.453 (3) | 127 |
| $\mathrm{C} 14-\mathrm{H} 14 \cdots \mathrm{O}^{\text {v }}$ | 0.93 | 2.61 | 3.519 (3) | 166 |

Symmetry codes: (i) $1+x, y, z$; (ii) $x, y, 1+z$; (iii) $-x, 1-y, 1-z$; (iv) $-x,-y, 1-z$; (v) $1-x, 1-y, 1-z$.

All H atoms were located in difference Fourier maps but were introduced in the refinement in calculated positions $(\mathrm{C}-\mathrm{H}=0.93 \AA)$ and treated as riding, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994; cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors thank the Zhejiang University of Technology Foundation for support of this research, and Professor Mingqing Chen (Fudan University, People's Republic of China), who has provided much help in this work.

## References

Ayling, E. E. (1929). J. Chem. Soc. 1, 253.
Bansho, Y., Huang, K. L. \& Kurano, T. (1960). Kogyo Kagaku Zasshi, 63, 1996.
Brunelle, D. J., Grubb, T. L. \& Tullos, G. L. (1999). European Patent Application 892003.
Dietmar, K., Stephan, M. \& Karl-Heinz, R.(1998). Ger. Öffen. DE 19636880.
Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Harms, K. \& Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Ojala, C. R., Ojala, W. H., Britton, D. \& Gougoutas, J. Z. (1999). Acta Cryst. B55, 530-542.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

